EU

EUROPÄISCHE FACHHOCHSCHULE

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3. Drucksensoren

3.1 Grundlagen

3.1.1 Allgemeines

So wie die Temperatur ist auch der Druck eine Zustandsgröße. Sehr viele physikalische und chemische Vorgänge verlaufen druckabhängig. So ist z. B. die Siedetemperatur des Wassers und anderer Stoffe abhängig vom herrschenden Luftdruck.

In der Technik ist die Messung von Drücken von großer Bedeutung, sei es zur Überwachung von Produktionsabläufen, sei es aus Sicherheitsgründen für Behälter und empfindliche Geräte, denen kein hoher Druck zugemutet werden kann.

Begriffsbestimmung gemäß DIN 1314

Als Druck p bezeichnet man den Spannungszustand flüssiger und gasförmiger Körper. Der Druck wird als Kraft F definiert, die senkrecht und gleichmäßig auf eine ebene Fläche einwirkt.

$p = \frac{F}{A}[bar]$	Normalkraft die auf die ebene Fläche wirkt
	Inhalt dieser Fläche

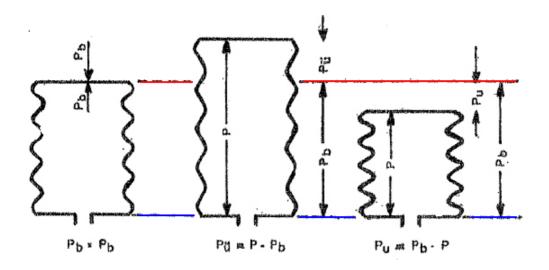
3.1.2 Maßeinheiten

Die physikalische Atmosphäre Ist wie folgt festgelegt:

Sie ist gleich einem Druck den eine Quecksilbersäule von 760 min Höhe mit einer Quecksilberdichte von 13,5951 bei 0 °C und bei einer Erdbeschleunigung von 980,665 cm/sec² auf eine horizontale Fläche erzeugt.

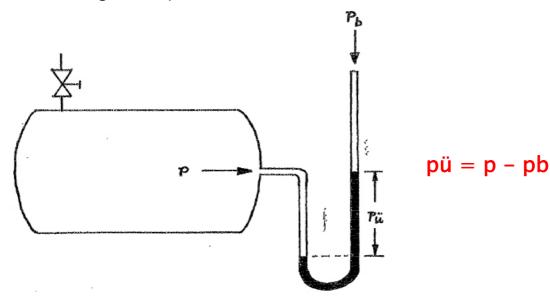
Die In der Technik heute gebräuchliche Einheit nach dem Gesetz für Maße und Gewichte vorgeschrieben, Ist das Bar. Da alle bisher gebräuchlichen Einheiten noch vorhanden sind, finden Sie in der Tabelle (nächste Seiten) alle Umrechungen.

1 bar	$\leftarrow \rightarrow$	760mmHg
1 bar	$\leftarrow \rightarrow$	10.000mmWs
1 bar	$\leftarrow \rightarrow$	$10^5N/m^2$
1 Pa	$\leftarrow \rightarrow$	$1N/m^2$



European University of Applied Sciences

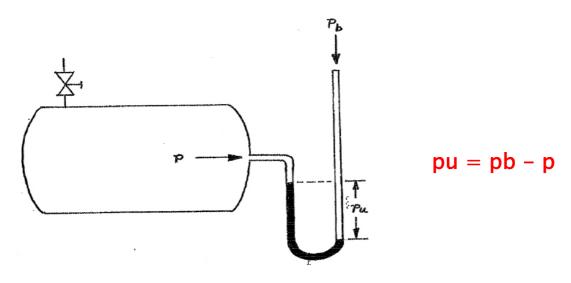
Brühl


Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

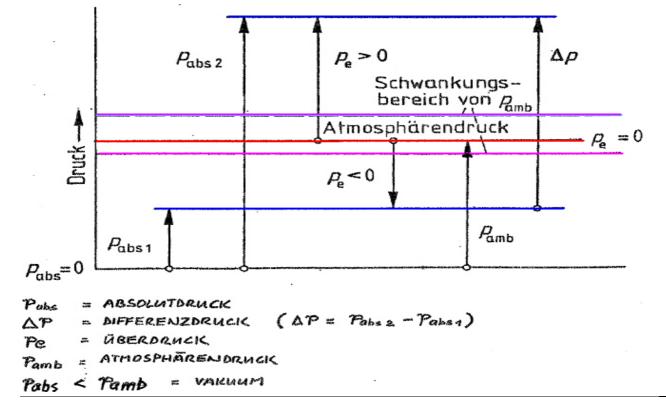
3.1.3 Überdruck und Unterdruck

Bei der Druckmessung wird In den meisten Fällen ein Druckunterschied bestimmt, der angibt, um weichen Betrag der im Innern eines Gefäßes herrschende Druck größer oder kleiner Ist als der augenblickliche atmosphärische Druck. In der Praxis genügt es, den Über- oder Unterdruck (Differenzdruck) gegenüber dem Bezugsdruck zu kennen,

Für den Überdruck gilt die Begriffsbestimmung: Überdruck (pü) = Druck (p) vermindert um den Bezugsdruck (pb)


European University of Applied Sciences

Brühl


Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Für den Unterdruck gilt. die Begriffbestimmung:

Unterdruck (pu) = Bezugsdruck (pb) vermindert um den Druck (p)

3.1.4 Absolut-, Relativ- und Differenzdruck

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Druckeinheiten 3.2

(Eine technische Information der Fa. WIKA)

SI-Einheiten - Technische Einheiten (metrisch)

	SI-Einheiten				Technische Einheiten								
	nach von	bar	mbar	μbar	Pa	kPa	MPa	mmHg	mmWS	mWS	kp/mm²	kp/cm²	atm
	1 bar	1	103	10 ⁶	10 ⁵	100	0,1	750,064	10,1972 · 10 ³	10,1972	10,1972 · 10 ⁻³	1,01972	0,986923
	1 mbar	10 ⁻³	1	10 ³	100	0,1	0,1 · 10 ⁻³	750,064 · 10 ⁻³	10,1972	10,1972 · 10 ⁻³	10,1972 · 10 ⁻⁶	1,01972 · 10 ⁻³	0,986923 · 10 ⁻³
eiten	1 µbar	10-6	10-3	1	0,1	0,1 · 10 ⁻³	0,1 · 10 ⁻⁶	750,064 · 10 ⁻⁶	10,1972 · 10 ⁻³	10,1972 · 10 ⁻⁶	10,1972 · 10 ⁻⁹	1,01972 · 10 ⁻⁶	0,986923 · 10 ⁻⁶
SI-Einheiten	1 Pa	10-5	0,01	10	1	10-3	10-6	7,50064 · 10 ⁻³	101,972 · 10 ⁻³	101,972 · 10 ⁻⁶	101,972 · 10 ⁻⁹	10,1972 · 10 ⁻⁶	9,86923 · 10 ⁻⁶
0)	1 kPa	0,01	10	10 · 10³	10 ³	1	10-3	7,50064	101,972	101,972 · 10 ⁻³	101,972 · 10 ⁻⁶	10,1972 · 10 ⁻³	0,986923 · 10 ⁻³
	1 MPa	10	10 · 10³	10 · 10 ⁶	106	10 ³	1	7,50064 · 10 ³	101,972 · 10 ³	101,972	101,972 · 10 ⁻³	10,1972	9,86923
	1 mmHg	1,33322 · 10 ⁻³	1,33322	1,33322 · 10 ³	133,322	133,322 · 10 ⁻³	133,322 · 10 ⁻⁶	1	13,5951	13,5951 · 10 ⁻³	13,5951 · 10 ⁻⁶	1,35951 · 10 ⁻³	1,31579 · 10 ⁻³
ten	1 mmWS	98,0665 · 10 ⁻⁶	98,0665 · 10 ⁻³	98,0665	9,80665	9,80665 · 10 ⁻³	9,80665 · 10 ⁻⁶	73,5561 · 10 ⁻³	1	10-3	10-6	0,1 · 10 ⁻³	96,7841 · 10 ⁻⁶
Einheiten	1 mWS	98,0665 · 10 ⁻³	98,0665	98,0665 · 10 ³	9,80665 · 10 ³	9,80665	9,80665 · 10 ⁻³	73,5561	10 ³	1	10 ⁻³	0,1	96,7841 · 10 ⁻³
Technische	1 kp/mm²	98,0665	98,0665 · 10 ³	98,0665 · 10 ⁶	9,80665 · 10 ⁶	9,80665 · 10 ³	9,80665	73,5561 · 10 ³	106	10 ³	1	100	96,7841
Techr	1 kp/cm²	0,980665	0,980665 · 10 ³	0,980665 · 10 ⁶	98,0665 · 10 ³	98,0665	98,0665 · 10 ⁻³	735,561	10 · 10 ³	10	0,01	1	0,967841
	1 atm	1,01325	1,01325 · 10 ³	1,01325 · 10 ⁶	101,325 · 10 ³	101,325	101,325 · 10 ⁻³	760	10,3323 · 10 ³	10,3323	10,3323 · 10 ⁻³	1,03323	1

Weitere Beziehungen: ■ 1 Pa

- $= 1 \text{ N/m}^2$
- 1 hPa = 1 mbar
- 1 mmHg = 1 Torr
- 1 kp/cm² = 1 at (atü)

Anmerkungen

Die Tabelle bezieht sich auf DIN 1301 Teil 1 (2002) und Teil 3 (1979). Gemäß Ausführungsverordnung zum Gesetz über Einheiten im Messwesen (Einheitenverordnung - EinhV) vom 13. Dezember 1985 sind nur folgende Einheiten für Druckgrößen zulässig:
 Pascal (Pa)

- Bar (bar)
 Millimeter-Quecksilbersäule (mmHg), jedoch nur für Blutdruck und Druck anderer Körperflüssigkeiten der Medizin

Für diese Einheiten gelten gemäß EinhV die Definitionen und Beziehungen nach DIN

Im Teil 1 dieser Norm ist aufgeführt:

- Pascal als abgeleitete SI-Einheit mit besonderem Namen und mit besonderem Einheitenzeichen
- Bar als allgemein anwendbare Einheit außerhalb des SI Millimeter-Quecksilbersäule als Einheit außerhalb des SI mit beschränktem Anwen-

dungsbereich Teil 3 dieser Norm definiert u.a. Umrechnungsbeziehungen für folgende Einheiten:

- konventionelle Millimeter-Quecksilbersäule (mmHg)
 konventionelle Wassersäule (mWS)
- Torr (Torr) technische Atmosphäre (at)
- physikalische Atmosphäre (atm)

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

SI-Einheiten - Technische Einheiten (zoll-abhängig)

	SI-Einheiten Technische Einheiten										
	nach von	bar	mbar	μbar	Pa	kPa	MPa	psi	ft H₂O	in. H₂O	in. Hg
	1 bar	1	10 ³	10 ⁶	10 ⁵	100	0,1	14,50377	33,4553	401,463	29,52998
	1 mbar	10 ⁻³	1	10 ³	100	0,1	0,1 · 10 ⁻³	14,50377 · 10 ⁻³	33,4553 · 10 ⁻³	401,463 · 10 ⁻³	29,52998 · 10 ⁻³
SI-Einheiten	1 µbar	10-6	10-3	1	0,1	0,1 · 10 ⁻³	0,1 · 10 ⁻⁶	14,50377 · 10 ⁻⁶	33,4553 · 10 ⁻⁶	401,463 · 10 ⁻⁶	29,52998 · 10 ⁻⁶
SI-Ein	1 Pa	10⁻⁵	0,01	10	1	10-3	10 ⁻⁶	0,1450377 · 10 ⁻³	0,334553 · 10 ⁻³	4,01463 · 10 ⁻³	0,2952998 · 10 ⁻³
	1 kPa	0,01	10	10 · 10³	10 ³	1	10 ⁻³	0,1450377	0,334553	4,01463	0,2952998
	1 MPa	10	10 · 10³	10 · 10 ⁶	106	10 ³	1	0,1450377 · 10 ³	0,334553 · 10 ³	4,01463 · 10 ³	0,2952998 · 10 ³
ten	1 psi	68,94757 · 10 ⁻³	68,94757	68,94757 · 10 ³	6,894757 · 10 ³	6,894757	6,894757 · 10 ⁻³	1	2,30666	27,6799	2,036020
Einheiten	1 ft H ₂ O	29,8907 · 10 ⁻³	29,8907	29,8907 · 10 ³	2,98907 · 10 ³	2,98907	2,98907 · 10 ⁻³	433,5275 · 10 ⁻³	1	12	0,8826709
Technische	1 in. H ₂ O	2,49089 · 10 ⁻³	2,49089	2,49089 · 10 ³	0,249089 · 10 ³	0,249089	0,249089 · 10 ⁻³	36,12729 · 10 ⁻³	83,3333 · 10 ⁻³	1	73,55591 · 10 ⁻³
Tec	1 in. Hg	33,86389 · 10 ⁻³	33,86389	33,86389 · 10 ³	3,386389 · 10 ³	3,386389	3,386389 · 10 ⁻³	0,4911542	1,132925	13,59510	1

Weitere Beziehungen: ■ 1 Pa

1 Pa = 1 N/m²

■ 1 psi = 1 lbf/in.²

■ 1 mmHg = 1 Torr

■ 1 kgf/cm2 = 1 at

Anmerkungen

Die Tabelle bezieht sich auf ISO 31-1:1992 und ISO 31-3:1992.

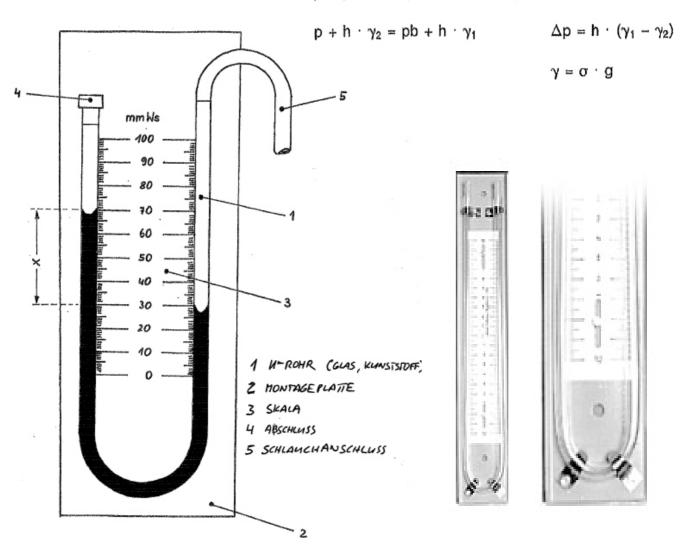
Für Längengrößen definiert ISO 31-1 Umrechnungsbeziehungen für nicht mehr anzuwendende Einheiten:

inch (in)

foot (ft)

Für Druckgrößen definiert ISO 31-3 Umrechnungsbeziehungen für nicht mehr anzuwendende Einheiten:

- pound-force per square inch (lbf/in.²)
- conventional millimetre of water (mmH2O)
- conventional millimetre of mercury (mmHg)
- Torr (Torr)
- technical atmosphere (at)
- standard atmosphere (atm)


European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

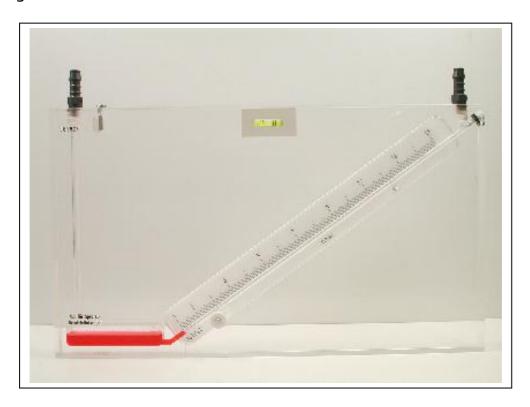
3.3 U-Rohrmanometer

p = pb + h · γ mit Sperrflüssigkeit ist:

Die Abbildung zeigt ein U-Rohrmanometer-Vakuummeter. Zur Füllung des U-Rohres findet je nach Druckbereich Quecksilber Acetylentetrabromid, gefärbtes Wasser und Alkohol Verwendung. Es besteht aus einem U-förmigen Rohr aus Glas (1), das auf einem Brett (2) befestigt Ist, Hinter dem Rohr Ist eine Spiegelskala (3) mit mm-Teilung angeordnet. Auf dem oberen Ende des linken Schenkels des U--Rohres befindet sich ein Verschluss (4), der das Rohr vor Verunreinigungen schützt, gleichzeitig durch eine Öffnung das Rohrinnere mit der Atmosphäre verbindet, Das rechte Rohrende wird durch einen Schlauch (5) mit der Druckoder Unterdruckquelle verbunden.

European University of Applied Sciences

Brühl


Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.4 Schrägrohrmanometer

Sind höhere Ablesegenauigkeiten erforderlich, werden Flüssigkeitsdruckmesser mit schrägem Rohr eingesetzt. Beim Schrägrohrmanometer ist ein Schenkel schwach steigend angeordnet. Eine kleine Höhendifferenz ändert daher die Länge der Flüssigkeitssäule stark.

$$\Delta p = g * 1 * \sin \alpha * \rho_{M}$$

Wichtig ist, dass die Neigung des Messschenkels bei Kalibrierung und Messung gleich ist. Um dieses zu erreichen, sind die Geräte mit Justierschrauben und Libellen ausgerüstet. Schrägrohrmanometer mit kapazitivem Abgriff der Lage der Flüssigkeitssäule sind auch als Messumformer lieferbar.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.5 Überdruckmessgeräte mit elastischem Messglied

(Eine technische Information der Fa. WIKA)

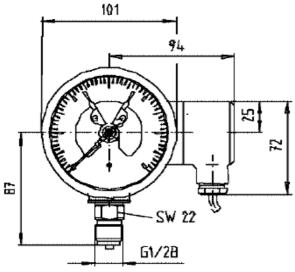
In der technischen Druckmessung sind anzeigende Druckmessgeräte mit elastischem Messglied wegen ihrer Robustheit und einfachen Handhabung weit verbreitet. Sie enthalten Messglieder, die sich unter dem Einfluss eines Druckes elastisch verformen. Mechanische Druckmessgeräte werden mit Rohr-, Platten-, Kapselfeder- und Wellrohrfedermessgliedern gefertigt und nach diesen unterschieden.

Die Messglieder bestehen aus Kupferlegierungen, legierten Stählen oder für spezielle Messaufgaben aus Sonderwerkstoffen. Drücke sind nur in Verbindung mit einem Bezugsdruck (Referenzdruck) messbar. Als Bezugsdruck dient normalerweise der Atmosphärendruck und das Druckmessgerät zeigt an, um wie viel höher oder niedriger der gemessene Druck in Bezug zum herrschenden atmosphärischen Druck ist (Überdruck-Messgerät).

Der Druck wird in genormten Anzeigebereichen über 270 Winkelgrade auf dem Zifferblatt durch einen Zeiger angezeigt. Flüssigkeitsgefüllte Druckmessgeräte bieten aufgrund ihrer Dämpfung einen optimalen Schutz gegen Zerstörung, die durch hohe dynamische Druckbelastungen oder Vibrationen hervorgerufen werden kann.

Bei Kombination mit Grenzsignalgebern können Schaltungen vorgenommen und bei Kombination mit Ferngebern können elektrische Ausgangssignale (z.B. 4 ... 20 mA) für industrielle Prozessautomatisierung genutzt werden.

European University of Applied Sciences

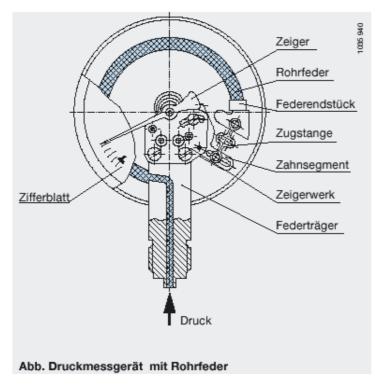

Brühl

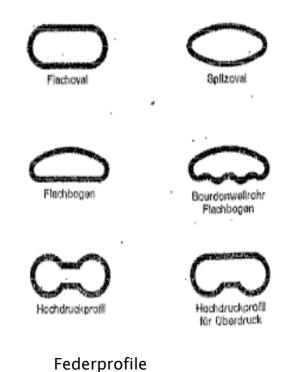
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.6 Manometertypen

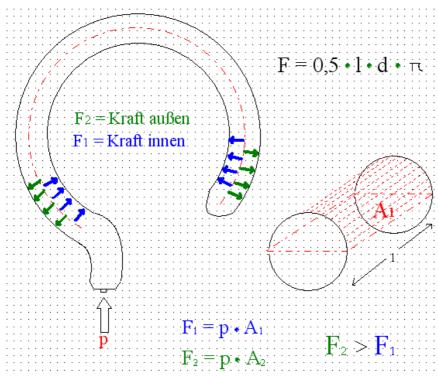
3.6.1 Rohrfedermanometer (Bourdonfeder)

Kontaktfedermanometer zur Grenzwert-Erfassung (z.B. Druck MIN/ Druck MAX)


Anschluss radial unten (rückseitiger exzentrischer Anschluss möglich)



European University of Applied Sciences


Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Über die Form der Federprofile erfolgt auch die Temperaturkompensation

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Physikalisches Prinzip

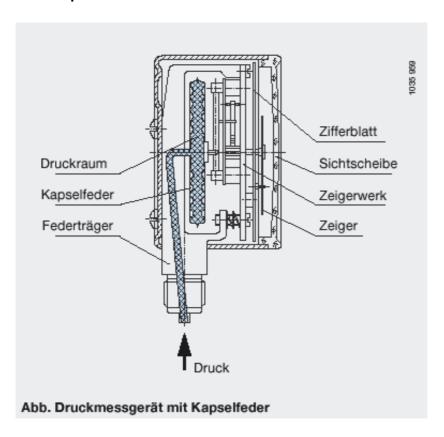
Rohrfedern sind kreisförmig gebogene Rohre von ovalem Querschnitt. Der Druck des Messstoffes wirkt auf die Innenseiten dieses Rohres, wodurch sich der Ovalquerschnitt der Kreisform annähert.

Durch die Krümmung des Federrohres entstehen Ringspannungen, welche die Rohrfeder aufbiegen. Das nicht eingespannte Federende führt eine Bewegung aus, die ein Maß für den Druck ist. Über ein Zeigerwerk wird diese Bewegung zur Anzeige gebracht. Die kreisförmigen, in einem Winkel von ca. 250° gebogene Federn werden für Drücke bis ca. 60 bar eingesetzt.

Für höhere Drücke finden Federn mit mehreren übereinanderliegenden Windungen von gleichem Wickeldurchmesser (Schraubenfeder) oder mit in einer Ebene liegenden spiralförmigen Windungen (Schneckenfeder) Verwendung.

Rohrfedern können nur begrenzt gegen Überlast geschützt werden. Um besonders schwierige Messaufgaben erfüllen zu können, kann dem Druckmessgerät ein Druckmittler als Trenn- bzw. Schutzvorlage vorgeschalten werden.

Die Anzeigebereiche liegen zwischen 0 ... 0,6 und 0 ... 7000 bar bei Anzeigegenauigkeiten (Genauigkeitsklassen) zwischen 0,1 und 4,0 %.



European University of Applied Sciences

Brühl

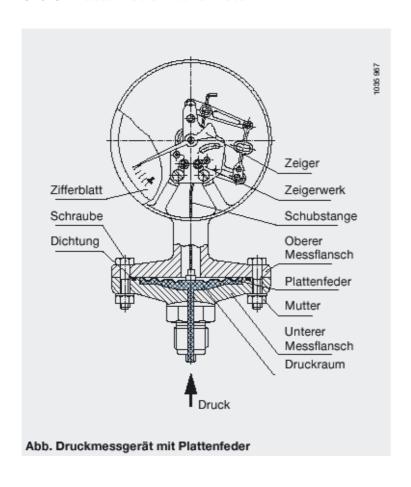
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.6.2 Kapselfedermanometer

Die Kapselfeder besteht aus zwei kreisförmigen, gewellten, am Rand druckdicht zusammengefügten Membranen. Der Druck wirkt auf die Innenseite dieser Kapsel und die erzeugte Hubbewegung wird als Maß für den Druck über ein Zeigerwerk zur Anzeige gebracht.

Druckmessgeräte mit Kapselfeder eignen sich besonders für gasförmige Messstoffe und relativ niedrige Drücke. Ein Überlastschutz ist in bestimmten Grenzen möglich. Werden mehrere Kapselfedern mechanisch in Reihe geschaltet (Kapselfeder-"Paket"), wird eine Erhöhung der Stellkraft erreicht.

Die Anzeigebereiche liegen zwischen 0 ... 2,5 mbar und 0 ... 0,6 bar in den Genauigkeitsklassen 0,1 bis 2,5.



European University of Applied Sciences

Brühl

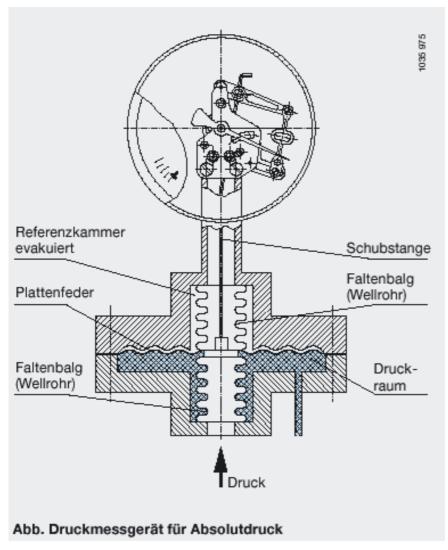
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.6.3 Plattenfedermanometer

Plattenfedern sind kreisförmige, gewellte Membranen. Sie werden zwischen zwei Flansche entweder am Rand eingespannt oder verschweißt und einseitig vom Druck des Messstoffes beaufschlagt. Die dadurch hervorgerufene Durchbiegung wird als Maß für den Druck genutzt und über ein Zeigerwerk zur Anzeige gebracht.

Plattenfedern haben im Vergleich zu Rohrfedern eine relativ große Stellkraft und durch die ringförmige Einspannung sind sie unempfindlicher gegen Erschütterungen.

Die Plattenfeder kann durch Abfangen (Anlage der Plattenfeder am oberen Flansch) höher überlastet werden und durch Beschichtung mit Sondermaterial oder Vorlegen



von Folien kann das Druckmessgerät auch vor extrem korrosiven Messstoffen geschützt werden.

Zur Messung von hochviskosen, verunreinigten oder kristallisierenden Messstoffen können weite Anschlussbohrungen, offene Anschlussflansche sowie Spülmöglichkeiten realisiert werden.

Die Anzeigebereiche liegen zwischen 0 ... 16 mbar und 0 ... 40 bar in den Genauigkeitsklassen 0,6 bis 2,5.

3.6.3.1 Beispiel für eine Absolutdruckmessung

EUFH_MSR_Vertriebsing_Drucksensoren_3_010211 .doc

European University of Applied Sciences

Brühl

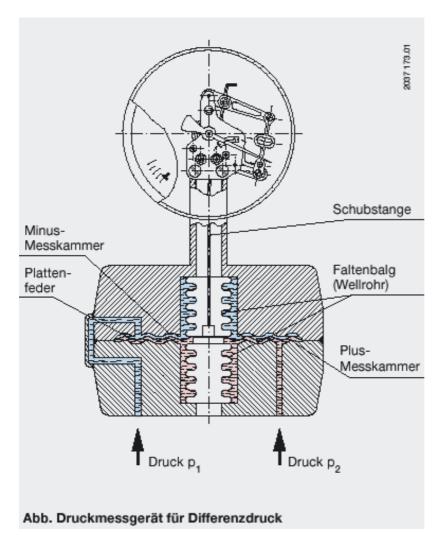
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Diese Geräte werden eingesetzt, wenn Drücke unabhängig von den natürlichen Schwankungen des atmosphärischen Druckes gemessen werden sollen. Prinzipiell können alle von den Überdruck-Messgeräten her bekannten Federformen und Messprinzipien verwendet werden. Der Druck des zu messenden Stoffes wird gegen einen Referenzdruck gemessen, der gleich dem Absolutdruck Null ist. An der nicht vom Messstoff beaufschlagten Seite des Messgliedes herrscht dazu in einer Referenzkammer als Referenzdruck absolutes Vakuum.

Durch Abdichten der entsprechenden Messkammer oder des umgebenden Gehäuses wird die Funktion realisiert. Die Übertragung der Messgliedbewegung und die Anzeige des Druckes erfolgen wie bei den bereits beschriebenen Überdruck-Messgeräten.

Die Anzeigebereiche liegen zwischen 0 ... 16 mbar und 0 ... 25 bar in den Genauigkeitsklassen 0,6 bis 2,5.

3.6.3.2 Beispiel einer Differenzdruckmessung


Beim Differenzdruckmessgerät wird die Differenz zweier Drücke direkt erfasst und zur Anzeige gebracht. Auch hier können prinzipiell alle von den Überdruck-Messgeräten her bekannten Federformen und Messprinzipien verwendet werden. Zwei abgeschlossene Messstoffräume sind durch das Messglied/ die Messglieder getrennt. Sind beide Betriebsdrücke gleich groß, wird das Messglied keine Bewegung ausführen und es erfolgt keine Druckanzeige. Erst wenn ein Druck erhöht oder niedriger ist, kommt es zur Differenzdruckanzeige.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Selbst bei hohen statischen Drücken werden kleine Differenzdrücke direkt messbar. Mit Plattenfeder-Messgliedern lässt sich eine sehr hohe Überlastbarkeit erreichen.

Der zulässige statische Druck und die angegebene + und - -seitige Überlastbarkeit sind zu beachten.

Die Übertragung der Messgliedbewegung und die Anzeige des Druckes erfolgen in den meisten Fällen wie bei den bereits beschriebenen Überdruck-Messgeräten.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Die Anzeigebereiche liegen zwischen 0 ... 16 mbar und 0 ... 25 bar in den Genauigkeitsklassen 0,6 bis 2,5.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.6.4 Druckmittler Anwendung – Wirkungsweise – Bauformen

(Eine technische Information der Fa. WIKA)

Druckmittler werden zu Druckmessungen dann eingesetzt, wenn der Messstoff mit den Drucktragenden Teilen des Messgerätes nicht in Berührung kommen soll.

Ein Druckmittler hat zwei primäre Aufgaben:

- Trennung des Messgerätes vom Messstoff
- 2. Übertragung des Druckes auf das Messgerät

Druckmessgerät

Manometer
Drucktransmitter
Druckschalter

Druckübertragungsflüssigkeit

Kapillarleitung/Kühlelement

Druckmittler
Druckmittler
Druckmittleroberteil

Membrane

Druckmessgerät mit Membran-Druckmittler

Wirkungsweise eines Druckmittlers

Die Wirkungsweise eines Druckmittlers ist (am Beispiel eines Membran-Druckmittlers) aus der Abbildung zu erkennen.

Prinzip

Der Raum zum Messstoff hin ist mit einer elastischen Membrane abgeschlossen.

Prozessanschluss

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Der Innenraum zwischen dieser Membrane und dem Druckmessgerät ist vollständig mit einer Druckübertragungsflüssigkeit gefüllt. Wirkt nun vom Messstoff her der Druck, so wird dieser über die elastische Membrane auf die Flüssigkeit übertragen und weiter auf das Messelement, also auf das Druckmessgerät oder den Messumformer. In vielen Fällen ist zwischen Druckmittler und Druckmessgerät eine Kapillarleitung geschaltet, um z. B. Temperatureinwirkungen vom heißen Messstoff auf das Messgerät auszuschalten bzw. zu minimieren. Die Kapillarleitung beeinflusst die Ansprechzeit des Gesamtsystems. Druckmittler, Kapillarleitung und Messgerät bilden ein in sich geschlossenes System. Die versiegelten Füllschrauben am Druckmittler und am Messgerät dürfen deshalb keinesfalls gelöst werden, da nach Austritt von Füllflüssigkeit die Funktion des Systems beeinträchtigt wird! Die Membrane und der Anschlussflansch sind Teile des Systems, die mit dem Messstoff in Berührung kommen. Deshalb muss der Werkstoff, aus dem sie bestehen, hinsichtlich Temperaturoder Korrosionsbeständigkeit entsprechende Anforderungen erfüllen.

Falls die Membrane undicht wird, kann die Füllflüssigkeit in den Messstoff eindringen. Bei Nahrungsmitteln muss diese für den Kontakt mit Lebensmitteln zugelassen sein. Bei der Auswahl der Füllflüssigkeit sind daher die Faktoren Verträglichkeit sowie Temperatur- und Druckverhältnisse am Messstoff von entscheidender Bedeutung. Es steht eine Vielzahl von Flüssigkeiten zur Verfügung, mit denen ein Temperaturbereich von -90 °C bis +400 °C abgedeckt werden kann (siehe Tabelle "Druckübertragungsflüssigkeiten").

Einsatzmöglichkeiten

Für den Anwender bedeuten Druckmittler zunächst einmal Druckmessgeräte aller Art, auch für schwierigste Aufgabenstellungen, einsetzbar zu machen.

Beispiele

Der Messstoff ist korrosiv, und das Druckmesselement selbst, z. B. das Innere einer Rohrfeder, kann nicht ausreichend dagegen geschützt werden.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Der Messstoff ist hochviskos und faserig, dadurch führen Toträume und enge Bohrungen im Druckmessgerät (Druckkanäle, Rohrfeder) zu Messproblemen.

Der Messstoff neigt zur Kristallisation oder zur Polymerisation.

Das Medium hat eine sehr hohe Temperatur. Dadurch erwärmt sich das Druckmessgerät stark. Die Erwärmung führt zu einem großen Temperaturfehler bei der Druckmessung (d. h. bei der Anzeige des Messdruckes am Messgerät). Es kann aber auch die Obergrenze

für die thermische Belastung der Messgerätebauteile überschritten werden.

Die Druckmessstelle liegt ungünstig. Aus Platzgründen kann das Druckmessgerät entweder nicht montiert werden oder nicht bzw. nur schlecht abgelesen werden. Durch Einbau eines Druckmittlers und der Verwendung einer längeren Kapillarleitung kann das Druckmessgerät dann an einem Ort installiert werden, wo es leicht eingesehen werden kann.

Bei der Herstellung des Prozessproduktes und in der Produktionsanlage sind Hygienevorschriften zu beachten. Aus diesen Gründen müssen Toträume im Messgerät und in den Fittings vermieden werden.

Der Messstoff ist giftig oder umweltschädlich. Er darf durch Undichtigkeiten nicht in die Atmosphäre oder in die Umgebung gelangen. Aus Gründen der Sicherheit und des Umweltschutzes müssen deshalb geeignete Schutzmaßnahmen ergriffen werden.

Es bedeutet außerdem, von den langjährigen Erfahrungen des Herstellers profitieren zu können, d. h. Technologievorsprung für die eigenen Aufgabenstellungen und deren Problemlösungen zu gewinnen.

Nicht zuletzt bedeutet der Einsatz von Druckmittlern, die Leistungsfähigkeit der Anlagen und Prozesse zu steigern:

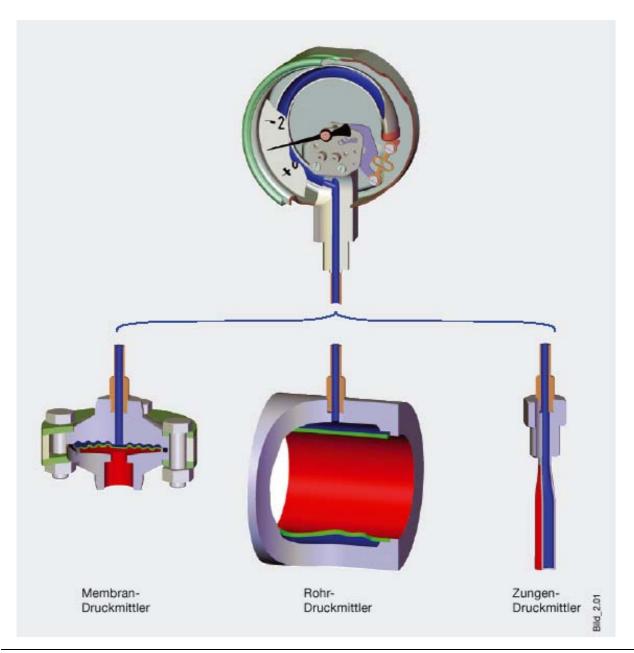
European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	DiplIng. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

- durch längere Lebensdauer der Messanordnung
- durch geringeren Montageaufwand
- durch Wegfall von Wartungsarbeiten

European University of Applied Sciences


Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Bauformen

Da die Einsatzfülle für Druckmittler sehr vielfältig ist, kann sie auch nicht nur mit einem Typ abgedeckt werden. Im Laufe der Zeit haben sich verschiedene Bauformen als besonders vorteilhaft für bestimmte Anwendungsfälle erwiesen.

So gibt es heute drei Grundarten:

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Häufig eingesetzte Druckübertragungsflüssigkeiten für Druckmittler (weitere auf Anfrage)

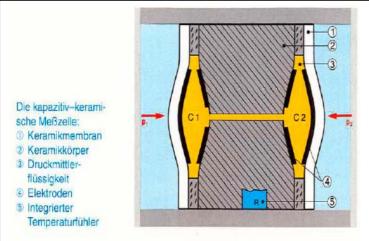
Name	Kenn- nummer	Zulässige Mess p ≥ 1000 mbar	stofftemperatur p < 1000 mbar ¹⁾	Dichte Tempe		Viskosität Temperat		Bemerkungen
	KN	abs	abs	[g/cm³]	[°C]	[m²/s·10 ⁻⁶]	[°C]	
Silikonöl	KN 2	-20 +200 °C	-	0,96	+25	50	+25	Standard
Silikonöl	KN 2.2	-40 +300 °C	-40 +150 °C	0,96	+25	55	+20	
Silikonöl	KN 17	-90 +180 °C	-90 +80 °C	0,914	+20	4	+20	
Hochtemperatur-Öl	KN 3.1	-20 ²⁾ +300 °C	-10 +100 °C	1,07	+20	39	+20	
Hochtemperatur-Öl	KN 3.2	-20 ²⁾ +400 °C	-10 +200 °C	1,07	+20	39	+20	
Halocarbon	KN 21	-40 +175 °C (max. 160 bar)	-40 +80 °C	1,968	+20	14	+20	für Sauerstoff und Chlor, BAM ⁴⁾ geprüft
Glyzerin	KN 7	+17 ³ +230 °C	-	1,26	+20	1110	+20	lebensmitteltauglich
Neobee® M-20	KN 59	-20 +200 °C	-20 +160 °C	0,92	+20	10,1	+25	lebensmitteltauglich
Medizinisches Weißöl	KN 92	-10 +260 °C	-10 +160 °C	0,85	+20	23	+40	lebensmitteltauglich

Für Druckmittler am häufigsten eingesetzte Werkstoffe (messstoffberührte Bauteile)

Werkstoff	Kurzbezeichnung
CrNi-Stahl	WNr. 316L, 1.4571, 1.4404, 1.4435, 1.4541, 1.4542, 1.4539
Duplex 2205	WNr. 1.4462
Hastelloy B2	WNr. 2.4617
Hastelloy C4	WNr. 2.4610
Hastelloy C22	WNr. 2.4602
Hastelloy C276	WNr. 2.4819
Incoloy alloy 825	WNr. 2.4858
Inconel alloy 600	WNr. 2.4816
Monel alloy 400	WNr. 2.4360

Werkstoff	Kurzbezeichnung
Nickel	WNr. 2.4066 / 2.4068
Platin	Pt
Tantal	Та
Titan	WNr. 3.7035
Zirkonium	Zr
Keramik	wikaramic®
Polytetrafluoräthylen	PTFE
Perfluoralkoxy	PFA
Copolymer von Ethen und Chlortrifluorethylen	ECTFE (Halar®)

Yakuumservice notwendig
 Bei Kapillarleitungsanbau ab -10 °C
 Bei Kapillarleitungsanbau ab 0 °C
 Bundesanstalt für Materialforschung und -prüfung


European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.7 Differenz-Druckmessumformer

Funktion der kapazitiv-keramischen Meßzelle

Die Keramikmeßzelle besteht aus dem Keramikkörper und den beiden Keramikmembranen für den Druck p₁ und p₂ — siehe Abbildung unten. Die Druckmittlerflüssigkeit verbindet beide Membranen. Eine Änderung des Differenzdrucks bewirkt eine Auslenkung beider Membranen, die direkt kapazitiv gemessen wird. Die Differenz von Kapazität C₁ und Kapazität C₂ entspricht dem anstehenden Differenzdruck. Die Meßbereiche reichen von 0...10 mbar bis 0...3000 mbar Differenzdruck.

Funktion der Selbstüberwachung

Die Summe von Kapazität C₁ und C₂ entspricht durch die temperaturproportionale Ausdehnung des Ölvolumens auch der Prozeßtemperatur. Eine im Sensor integrierte Temperaturmessung liefert den zweiten Wert. Der Mikroprozessor vergleicht ständig beide Werte — bei einer Abweichung gibt der Deltabar Alarm.

Robust und zuverlässig

Die überzeugenden Vorteile der kapazitiv-keramischen Meßzelle des Deltabars:

- Das kapazitive Meßprinzip ist besonders bewährt und zuverlässig
- Der Werkstoff Keramik ist extrem widerstandsfähig gegen abrasive und aggressive Medien
- Die bis zu 1,6 mm dicken Keramikmembranen sind robust und unempfindlich gegen Druckstöße

Dipl.-Ing. (FH) Matthias Trier

European University of Applied Sciences

Brühl

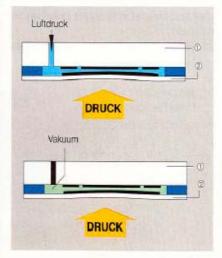
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.8 Druckmessumformer


Funktionsprinzip der kapazitivkeramischen Meßzelle

Der Meßdruck bewirkt eine maximale Auslenkung der Membran des Keramiksensors von nur 0,025 mm. Die sich daraus ergebende druckproportionale Kapazitātsänderung wird an den Elektroden der Meßmembran und des Keramikträgers direkt - ohne Druckmittler gemessen. Bei Überlast legt sich die Membran nach 0,1 mm an den Keramikkörper an. Dadurch ist der Cerabar extrem überlastfest und vakuumtauglich. So führt z. B. eine Druckspitze von 10 bar bei einem 0,1 bar-Meßbereich zu keiner Beeinträchtigung der Funktion und der Meßgenauigkeit (= 100fache Überlastfestigkeit).

Druckmessung bei der Druckluftaufbereitung mit Adsorbtionstrocknern. Zur Spurenfeuchtemessung sind die Feuchtesensoren »Hygrolog« eingesetzt.

Die »Druckarten» des Cerabars: Relativdruck (relativ zum Luftdruck) Absolutdruck (gegen Vakuum) Keramikträger Keramikmembran

EUFH_MSR_Vertriebsing_Drucksensoren_3_010211 .doc

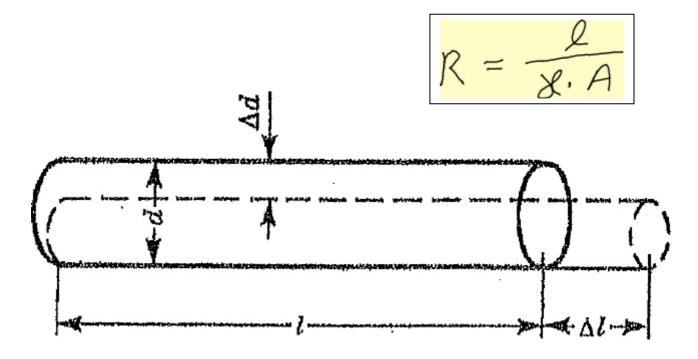
Dipl.-Ing. (FH) Matthias Trier

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	DiplIng. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3,9 Druck- (Kraft-) Messung mittels Dehnmessstreifen


3.9.1 Grundlagen Dehnmessstreifen

Dehnungsmessstreifen, Dehnmessstreifen oder kurz DMS wurden 1938 in Massachusetts, USA, von Arthur Claude Ruge erfunden. Sie basieren auf einem simplen physikalischen Prinzip. Jeder elektrische Leiter besitzt nämlich einen elektrischen Widerstand. Dieser ist abhängig von Material, Temperatur und den geometrischen Abmessungen des Leiters. Uns interessieren die Abmessungen, da Material und Temperatur während einer Messung praktisch konstant sind:

Bei steigender Länge des Leiters wird der elektrische Widerstand größer.

Bei steigendem Querschnitt des Leiters wird der elektrische Widerstand kleiner.

Daraus folgt, wenn ein elektrischer Leiter gestreckt wird, sich also seine Länge vergrößert und sich gleichzeitig sein Querschnitt verringert, steigt der Widerstand. Und solange dies im elastischen Bereich erfolgt, funktioniert es auch umgekehrt. Wenn der elektrische Leiter gestaucht wird, sich seine Länge also verkürzt und sich sein Querschnitt vergrößert, so vermindert sich sein elektrischer Widerstand. Dieser Effekt wird für DMS genutzt.

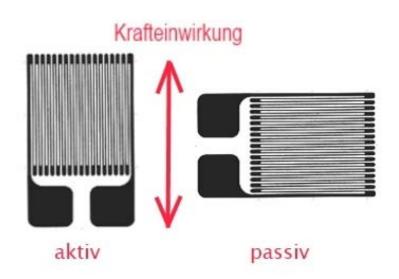
European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

European University of Applied Sciences

Brühl


Ingenieurwissenschaften	Mess- und Regeltechnik	DiplIng. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Übliche Widerstandswerte für Dehnungsmessstreifen sind 120 Ohm seltener 600 Ohm. Der zulässige Messstrom liegt bei den meisten Streifen zwischen 10 und 20 mA, Die Messgitterlängen werden von 0,6 bis 150 mm ausgeführt. Häufig vorkommende Längen sind 3, 6 und 10 mm. Der günstigste Bereich für Dehnungsmessstreifen liegt bei etwa 1 $^{0}/_{00}$ Dehnung. Messstreifen sind bei Umgebungstemperaturen von – 270 °C bis 1000 °C verwendbar.

Die Reproduzierbarkeit ist hervorragend, der Effekt ist an sich frei von Hysterese, Durch die Einbettung in Kunstharz und das Aufkleben wird jedoch ein Nullpunktfehler hervorgerufen. Dieser entspricht bei einwandfreier Klebestelle für normale Dehnungsmessstreifen einem Wert unter 0,03 $^{0}/_{00}$ Dehnung, ihr schwingungsfeste Dehnungsmessstreifen einem Betrag von unter 0,01 $^{0}/_{00}$ Dehnung. Im unbelasteten Zustand sind Messstreifen unbegrenzt haltbar. Wegen des Aufklebens und der damit verbundenen Beschädigung beim Abnehmen sind sie jedoch nur ihr einen Versuch verwendbar.

3.9.2 Aktive und passive Anbringung von DMS

Wird ein DMS passiv montiert, führt die Krafteinwirkung nur zu einem aufbiegen des DMS und nicht zu der gewünschten Längen- und Querschnittänderung.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.9.3 Statische Fehler

Die Widerstände der Drahtdehnungsmessstreifen werden mit maximalen Fehlern von etwa 0,3 % hergestellt, als Toleranz ihr den K – Faktor sind meist bis zu 3 % zulässig. Der Messeffekt ist bis weit über die Elastizitätsgrenze des Materials sehr gut linear.

3.9.4 Einflussgrößen

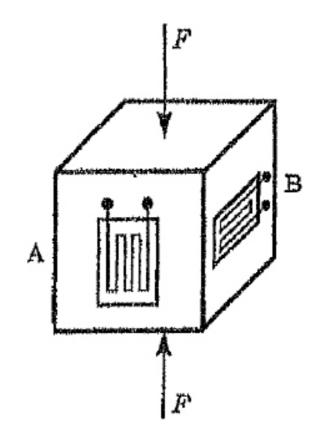
Die wichtigste Einflussgröße bei Dehnungsmessungen ist die Temperatur, Denn außer von der Dehnung hängt die Widerstandsänderung des Messstreifens von der Temperaturdehnung des zu messenden Werkstückes vom Temperaturkoeffizienten des verwendeten Materials ab. Deshalb sind besondere Maßnahmen erforderlich, um den Einfluss der Temperatur klein zu halten.

Naheliegend ist es, ein Material für die Dehnungsmessstreifen zu verwenden, das bei der Messung auf einem bestimmten Werkstoff einem möglichst kleinen Temperatureinfluss unterworfen ist.

Ausgesuchtes Konstantan zeigt z. B. bei Messungen auf einer Stahloberfläche nur geringe vorgetäuschte Spannungen, die bei einer Temperaturänderung von 10 K innerhalb von \pm 210 N/cm2 liegen. Dieser kleine verbleibende Temperatureinfluss ist schaltungstechnisch sehr leicht zu kompensieren,

Eine weitere Möglichkeit Temperatureinflüsse zu bekämpfen, liegt in der Verwendung temperaturkompensierter Dehnungsmessstreifen, Ihr Widerstand setzt sich zusammen aus Anteilen mit positivem und negativem Temperaturkoeffizienten, die so gewählt werden, dass bei einem bestimmten Unterlagenwerkstoff der Temperaturfehler in einem gewissen Bereich verschwindet.

European University of Applied Sciences


Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	DiplIng. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

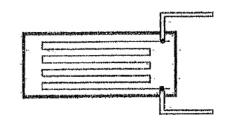
Die häufigste Methode um den Einfluss der Temperatur zu minimieren, wird durch geeignete Messschaltungen verwirklicht, Man benützt einen zweiten,

gleichartigen Messstreifen, der der gleichen Temperatur ausgesetzt, mechanisch aber unbelastet ist. In einer Brücke wer den der belastete Messstreifen und der unbelastete Blindstreifen so geschaltet, dass sich die Einflüsse der Temperatur gerade kompensieren.

Dehnungsmessstreifen können dann angewendet werden, wenn die notwen-digen Messkräfte zur Verfügung stehen, Die Kräfte, die dabei auf gebracht werden müssen sind relativ groß und betragen etwa 10 N. Wenn die zur Verfügung stehenden Kräfte nicht genügend groß sind, so ergeben sich durch den Kraftverbrauch der Messstreifen scheinbar

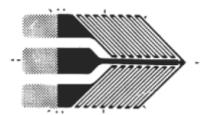
kleinere Dehnungen. Obwohl der Kraftaufwand bei Dehnungsmessstreifen sehr erheblich ist, ist die abgebbare elektrische Leistung sehr gering.

Arthur Claude Ruge klebte einen dünnen Widerstandsdraht in Mäanderform auf ein Stück dünnes Seidenpapier. Dies befestigte er an einem Biegestab. Er verglich die Widerstandsänderung mit der tatsächlichen Dehnung. Der Vergleich zeigte, dass zwischen den Ergebnissen seines DMS und denen eines herkömmlichen Dehnungsmessgeräts gute Übereinstimmung bestand.


European University of Applied Sciences

Brühl

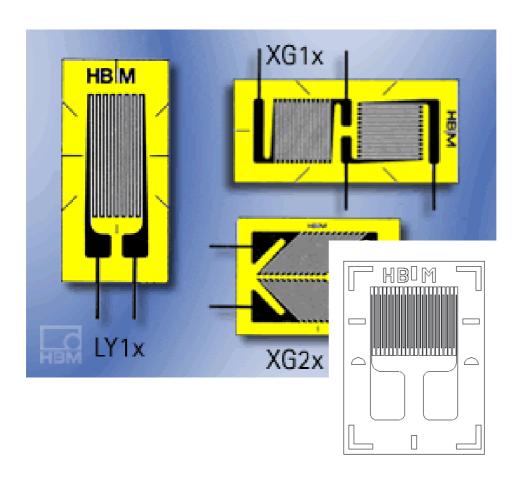
Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011



Folien-DMS

Draht-DMS

Heutzutage befindet sich ein hauchdünner Leiter auf einer Trägerfolie. Als Trägerfolie verwendet man beispielsweise Polyimid. Die Leiterbahn wird meist aus Konstantan gefertigt. Dieses weist eine hohe Temperaturstabilität auf.


Zur Drehmomentmessung werden Dehnmessstreifen in Hauptspannungsrichtung an einem zugänglichen Wellenabschnitt appliziert. Idealerweise werden vier Dehnmessstreifen in einer Ebene senkrecht zur Drehachse, um 90 Grad versetzt und 45 Grad zur Wellenachse verdreht angeordnet. Somit liegen jeweils zwei Dehnmessstreifen genau gegenüber. Zur Vereinfachung der Installation werden zwei Dehnmessstreifen zu einem Paar zusammengefasst. Der Markt hält für diesen Einsatzfall spezielle DMS-Paare bereit.

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	DiplIng. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Linear-DMS 1,5 mm, 350 Ω

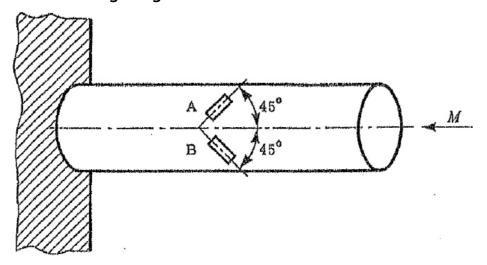
Abmessungen:

- Messgitterlänge
- Messgitterbreite
- Gesamtlänge
- Gesamtbreite

4,1 mm

Technische Daten

- Messgitter Werkstoff: Konstantanfolie Dicke: 5 μm


- Träger
 Werkstoff: Phenolharz, glasfaserverstärkt
 Basisdicke: 35 μm ± 10 μm
 Deckendicke: 25 μm ± 8 μm

Anschlüsse - integrierte Lötstützpunkte

Widerstand 350 Ω ± 0,3%

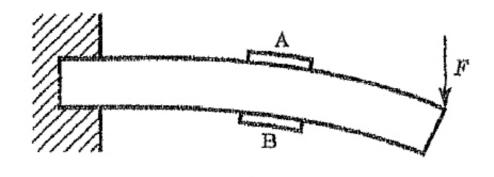
Wärmeausdehnungskoeffizient α für Stahl 10,8 x 10 $^{\circ}$ /K α für Aluminium 23 x 10 $^{\circ}$ /K

3.9.5 Anwendungsmöglichkeiten

EUFH_MSR_Vertriebsing_Drucksensoren_3_010211 .doc

Dipl.-Ing. (FH) Matthias Trier

e



European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Messung der Torsion

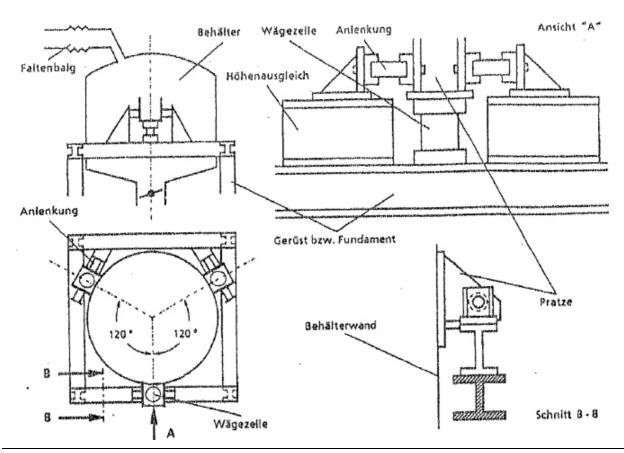
Messung der Biegespannung

EUFH_MSR_Vertriebsing_Drucksensoren_3_01021 .doc

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011


Zugkraftmessung in einer Maschinenschraube

DMS für medizinische Anwendungen

Der Einsatz von DMS beschränkt sich nicht nur auf übliche Konstruktionswerkstoffe, sondern erstreckt sich auch auf Anwendungen aus der Medizin. Belastungsuntersuchungen an Knochen wurden ebenso erfolgreich mit HBM-DMS durchgeführt wie Kaukraftmessungen an menschlichen Gebissen.

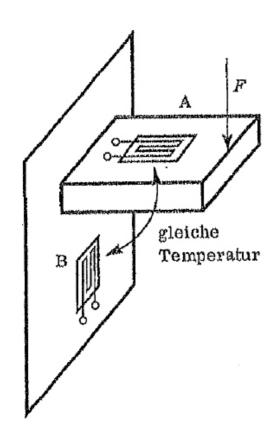
Kraftmessungen an der menschlichen Wirbelsäule

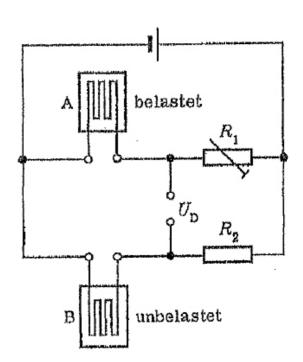
European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

Niveaumessung / Behälterwaage




European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

3.9.6 Messschaltung

Der DMS "B" dient der Temperaturkompensation. Beide DMS sind der selben Temperatur ausgesetzt.

3.9.7 DMS-Materialien

- > Konstantan (60% Cu, 40% Ni)
- Karma (74 % Ni, 20% Cr, 3 % Fe, 3 % Al)
- > Platin-Iridium (90 % Pt, 10 % Ir)
- > Platin (100 % Pt)
- ➤ Halbleiterwerkstoffe (hochdotiertes Silizium → schlechtere Linearität,

European University of Applied Sciences

Brühl

Ingenieurwissenschaften	Mess- und Regeltechnik	Dipl.–Ing. (FH) M. Trier
Vertriebsingenieurwesen	Sensorik u. Messtechnik	15. Januar 2011

höhere Empfindlichkeit)